Analisis sentimen twitter terhadap steam menggunakan algoritma logistic regression dan support vector machine

نویسندگان

چکیده

Games online yakni hal yang sudah menempel di masyarakat saat ini. Dalam beberapa tahun terakhir, ekspansi internet dan perangkat cepat telah mempercepat munculnya games online. Motivasi utama pemain untuk terus bermain adalah ketersediaan kemampuan multi-pengguna dapat diakses mana saja. Seiring perkembangan teknologi ini banyak platform penjualan seperti Steam, Epic Store, Origin sebagainya, opini terkadang sulit dikomunikasikan secara eksklusif kepada pengelola khususnya develover Steam sebagai games, Ini mendorong individu mengirimkan komentar, penilaian, konten serupa melalui media sosial, salah satu jejaring sosial paling terkenal ialah Twitter. Deretan tweet atau asal pengguna Twitter terkait dipergunakan menjadi analisis sentimen. penelitian data menggunakan dikumpulkan sampai 4363 ulasan positif negatif terhadap steam dalam twitter, memakai TextBlob Library menyediakan API sederhana buat menyelam ke pada tugas Natural Language Processing (NLP) kemudian diproses metode penambangan (data mining), termasuk teks, cleaning, case folding, tokenization, filtering stopword, serta wordcloud. Untuk menghitung Confusion Matrix 2 algoritma berbeda perbandingan, digunakan Logistic Regression Support Vector Machine. Dari percobaan perhitungan itu diketahui bahwa Super Machine mendapatkan nilai optimal dengan accuracy 0.81, precision 0.85 recall 0.77

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analisis dan Sintesis Sinyal Suara

Audio signal information with high quality would help the television audience to increase the perception of the information displayed. Transmission channel capacity will become limited, while the need of channel communication is increased. The research aim is coding the audio signal on the low bit rate for saving the channel communication usage for digital television broadcasting. The research ...

متن کامل

Analisis Sentimen Review Produk Kosmetik Melalui Komparasi Feature Selection

Sentiment analysis is a computational study of the opinions, behaviors and emotions of people toward the entity. The entity describes the individuals, events or topics. That topics generally could be the review of diverse datasets, one of which is a product review. By reading the review of products based on the experiences of other consumers, it will be recognized the quality of a product. It g...

متن کامل

On-Line Support Vector Machine Regression

This paper describes an on-line method for building ε-insensitive support vector machines for regression as described in (Vapnik, 1995). The method is an extension of the method developed by (Cauwenberghs & Poggio, 2000) for building incremental support vector machines for classification. Machines obtained by using this approach are equivalent to the ones obtained by applying exact methods like...

متن کامل

Regression depth and support vector machine

The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik’s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special ...

متن کامل

Support Vector Machine for Interval Regression

Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Teknosains: Jurnal Sains, teknologi dan Informatika

سال: 2023

ISSN: ['2721-4729', '2087-3336']

DOI: https://doi.org/10.37373/tekno.v10i2.440